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Abstract

In this paper, the dynamic aeroelastic response and the related robust control of aircraft swept wings exposed to gust

and explosive type loads are examined. The structural model of the wing is in the form of a thin/thick-walled beam and

incorporates a number of non-standard effects, such as transverse shear, material anisotropy, warping inhibition, the

spanwise non-uniformity of the cross-section, and the rotatory inertias. The circumferentially asymmetric stiffness lay-up

configuration is implemented to generate preferred elastic couplings, and in this context, the implications of the

plunging–twist elastic coupling and of warping inhibition on the aeroelastic response are investigated. The unsteady

incompressible aerodynamic theory adopted in this study is that by von-Kármán and Sears, applicable to arbitrary small

motion in the time domain. The considered control methodology enabling one to enhance the aeroelastic response in the

subcritical flight speed range and to suppress the occurrence of the flutter instability is based on a novel control approach

that is aimed to improve the robustness to modeling uncertainties and external disturbances. To this end, a combined

control based on Linear Quadratic Gaussian (LQG) controller coupled with the Sliding Mode Observer (SMO) is designed

and its high efficiency is put into evidence.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The next generation of advanced flight vehicles, and especially the military ones, are likely to operate in
more severe environmental conditions than in the past. In this connection, the study of dynamic aeroelastic
response and robust control of their aircraft wings to time-dependent external loadings, such as gust,
sonic-boom and explosive induced blast is highly demanded. The significance of present research is
closely related not only to the goal of improving the operational qualities of these flight vehicles, but also with
that of the avoidance of structural failure by fatigue, and even of their catastrophic failure, when, in special
instances, such as escape maneuvers, the combat aircraft is crossing the flutter boundary. In spite of the
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

AR wing aspect ratio, L/b
aij one-dimensional stiffness coefficient
b semiwidth of the beam cross-section
CLf local life curve slope
Fo , rt(s) primary and secondary warping func-

tions, respectively
Gsy effective membrane shear stiffness
h(k), h thickness of the kth layer and thickness

of the wall, respectively
Lae unsteady aerodynamic loads
Lg, Lb aerodynamic loads due to gust and blast,

respectively
Mx, My one-dimensional stress couples
m number of truncated modes used for the

calculation
N number of polynomials used in the shape

function
n number of aerodynamic lag terms used in

the approximation of Wagner’s function
P0 peak reflected overpressure
Qz transverse shear force in the z direction
r pulse length factor

Un chordwise freestream speed, defined as
UNcosL

UN streamwise freestream speed
VG peak gust velocity
w0, f deflection, rotation about the reference

axis
ŵ0; f̂; ŷxnon-dimensionalized counterparts of w0,

f, yx

yx rotation of the cross-section about x-axis
[yn] lay-up scheme
L sweep angle
rN mass density of the freestream
t non-dimensional time variables, defined

as Un t/b
tp positive phase duration of the pulse
fN Wagner’s function
Ĉo; Ĉf; Ĉx admissible shape functions vectors

with dimension N� 1
ck Küssner’s functionH
c

;
R L
0 integral along the cross-section and the

span, respectivelyR b

�b
;
R 1
�1 airfoil integrals

ð_Þð€Þ½ � qð Þ=qt; q2ð Þ=q2t
� �

½ð Þ
0; ð Þ00� qð Þ=qy; q2ð Þ=qy2

� �
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evident practical importance of the problems of the aeroelastic response and control of flight vehicle
structures subjected to blast-type pressure pulses, the specialized literature is very scanty. In this sense,
the reader is referred to the most authoritative survey papers, Refs. [1,2] and also Ref. [3], where the
status of these problems has been presented. It should be mentioned that, in the context of aeroelastic
response to blast loads, the main available results have concerned the aeroelastic response of 2-D
airfoils without incorporation of any control capability (see e.g. Refs. [4–8] while for 3-D wings, the
problem considered in the same spirit was addressed in Ref. [9]. In this paper, the approach of the problem is
carried out in a broader context, in the sense that the aircraft wing is modeled as an anisotropic
composite thin/thick-walled beam that encompasses a number of non-classical features. Moreover, a novel
robust control approach intended to improve robustness to modeling uncertainties and external disturbances,
to alleviate the aeroelastic response in the subcritical flight speed regime and expand the flight envelope by
postponing the occurrence of the flutter instability is presented. The results show that the proposed
performances are superior to those based on classical robust methodologies based solely on Kalman
filter observer.
2. The structural model and the governing system

2.1. Kinematic equations

Toward the study of the aeroelastic response and feedback control of advanced aircraft wings, the concept
of single-cell, closed cross-section composite anisotropic thin/thick-walled beam is used. The considered beam
model incorporates a number of non-classical effects, such as anisotropy of constituent materials, transverse
shear, warping inhibition, plunging–twist elastic coupling, contourwise shear stiffness variation, and spanwise
non-uniformity of the wing cross-section. In various contexts, these effects have been accounted for in
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Fig. 1. Geometry of the aircraft wing modeled as a thin/thick-walled beam.
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Ref. [10] through [11], and especially in monograph [12], where their implications have been assessed and
validated. It should also be mentioned that in the context of an advanced composite solid beam

model, problems of aircraft wing aeroelastic instability have been considered in Refs. [13–15].
The wing structure, modeled as a single-cell of a symmetric bi-convex cross-section is represented
in Fig. 1. Its points are referred to the global coordinate system (x, y, z) with its origin at the wing root.
Coordinates x and y constitute the chordwise (positive rearward) and the spanwise one, respectively, while z is
the coordinate normal to plane (x, y), positive upward. In addition, a local coordinate system (s, y, n) is
adopted, where s and n are the circumferential and the transversal ones, respectively. Based on the
assumptions stipulated in Ref. [12], the following representation for the 3-D displacement quantities is
considered:

uðx; y; z; tÞ ¼ u0ðy; tÞ þ zfðy; tÞ ,

vðx; y; z; tÞ ¼ v0ðy; tÞ þ xðsÞ � n
dz

dn

� �
yzðy; tÞ

þ zðsÞ þ n
dx

dz

� �
yxðy; tÞ � F ðsÞ � nrtðsÞ½ �f0ðy; tÞ ,

wðx; y; z; tÞ ¼ w0ðy; tÞ � xfðy; tÞ; (1a 2 c)

where

yxðy; tÞ ¼ gyzðy; tÞ�w00ðy; tÞ and yzðy; tÞ ¼ gxyðy; tÞ � u00ðy; tÞ . (2)

In the above expressions, yxðy; tÞ; yzðy; tÞ and fðy; tÞ denote the rotations of the cross-section about the axes
x, z, and the twist about the y-axis, respectively; gyzðy; tÞ and gxyðy; tÞ denote the transverse shear strain

measures, while v0ðy; tÞ; u0ðy; tÞ and w0ðy; tÞ denote the spanwise, lateral and transversal displacements of the

wing reference line, respectively.
The primary and secondary warping functions in Eq. (1b) are expressed as (see Refs. [11,12])

FwðsÞ ¼

Z s

0

rnðsÞ � cðsÞ½ �ds;

rtðsÞ ¼ � z
dz

ds
þ x

dx

ds

� �
(3)



ARTICLE IN PRESS
L. Librescu et al. / Journal of Sound and Vibration 318 (2008) 74–92 77
in which the torsional function c(s) and the geometrical quantity rn(s) are as follows:

cðsÞ ¼

H
C

rnðs̄Þds̄

hðsÞGsyðsÞ
H

C

ds̄

hðs̄ÞGsyðs̄Þ

; rnðsÞ ¼ z
dx

ds
� x

dz

ds
, (4a,b)

where Gsy(s) is the effective contourwise membrane shear stiffness defined as

GsyðsÞ ¼
Nsy

hðsÞg0syðsÞ
. (5)

It is noted that for the general thin/thick-walled beam theory, the six kinematic variables, u0(y,t), v0(y,t),
w0(y,t), yx(y,t), yz(y,t), f(y,t) that represent 1-D displacement measures, constitute the basic unknowns of the
problem. When transverse shear effect is discarded, Eqs. (2) reduce to yx ¼ �w00; yz ¼ �u00; and as a result, the
number of basic unknown quantities reduces to four. Such a case leads to the classical, unshearable beam
model.

In the case of the aeroelasticity of aircraft wings featuring a symmetric bi-convex cross-section and
experiencing bending–twist elastic coupling, a specific lay-up architecture, referred to as the circumferentially

asymmetric stiffness (CAS) configuration will be adopted [10,12,16]. In its context, the aeroelastic governing
equations are exactly and entirely decoupled into two groups: (i) vertical bending (plunging)/twist (pitch)/
vertical transverse shear expressed in terms of 2-D displacement measures, w0(y,t), f(y,t) and yx(y,t), and
(ii) extension/lateral bending/lateral transverse shear, expressed in terms of displacement quantities u0(y,t),
v0(y,t) and yy(y,t). As is evident, only the former set of elastic couplings is relevant for the present problem,
and, as a result, the problem involving the latter ones will not be considered. In order to better distinguish the
terms that are proper to the problem at hand, in Eqs. (1) these were underscored by a solid line.

In order to be reasonably self-contained, the basic equations that yield the pertinent governing equations
will be summarized.

The strain quantities, restricted to those that are relevant to the present problem are:
Spanwise strain component:

�yyðn; s; y; tÞ ¼ �
ð0Þ
yy ðs; y; tÞ þ n�ð1Þyy ðs; y; tÞ, (6a)

where

�ð0Þyy ðs; y; tÞ ¼ v00ðy; tÞ þ y0zðy; tÞxðsÞ � f00ðy; tÞFwðsÞ , (6b)

�ð0Þyy ðs; y; tÞ ¼ v00ðy; tÞ þ y0zðy; tÞxðsÞ þ y0xðy; tÞzðsÞ � f00ðy; tÞFwðsÞ,

�ð1Þyy ðs; y; tÞ ¼ �y
0
zðy; tÞ

dz

ds
þ y0xðy; tÞ

dx

ds
� rtðsÞf

00
ðy; tÞ (6c)

are the axial strain components associated with the primary and secondary warping, respectively.
The tangential shear strain:

gsyðs; y; tÞ ¼ g0syðs; y; tÞ þcðsÞf0ðy; tÞ , (7a)

where

g0syðs; y; tÞ ¼ gxy

dx

ds
þ gyz

dz

ds
¼ u00 þ yz

� �dx

ds
þ w00 þ yx

� � dz

ds
. (7b)

The transverse shear strain:

gnyðs; y; tÞ ¼ �gxy

dz

ds
þ gyz

dx

ds
¼ � u00 þ yz

� � dz

ds
þ w00 þ yx

� � dx

ds
. (8)

In their expressions, the same convention of underscoring the terms pertinent to bending–twist coupling was
adopted.
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2.2. The governing system

The governing equations and boundary conditions that should be consistent with the previously displayed
kinematical equations are derived via the Extended Hamilton’s Principle. It states that the true path of motion
renders the following variational form stationary:Z t2

t1

ðdT � dV þ dW eÞdt ¼ 0; (9a)

with

dw0 ¼ dyx ¼ df ¼ 0 at t ¼ t1; t2, (9b)

where T and V denote the kinetic energy and strain energy, respectively, dW e denotes the virtual work due to
external forces, while t1 and t2 are two arbitrary instants of time. The energy quantities intervening in Eq. (9a)
are as follows:

Kinetic energy:

T ¼
1

2

Z L

0

I
C

Xm1

k¼1

Z
hðkÞ

rðkÞ
qu

qt

� �2

þ
qw

qt

� �2

þ
qv

qt

� �2
" #

dndsdy, (10)

Strain energy:

V ¼
1

2

Z
t
sij�ijdt

¼
1

2

Z L

0

I
C

Xm1

k¼1

syy�yy þ ssygsy þ snygny

� �
hðkÞ

dndsdy; (11)

Virtual work due to unsteady aerodynamic, gust, blast and control loads:

dW e ¼

Z L

0

ðpzðy; tÞdw0ðy; tÞ þmyðy; tÞdfðy; tÞÞdy; (12)

where pz ¼ Lae+dgLg+dbLb+Lc (positive upwards) stands for the combined aerodynamic, blast/gust and
control lift per unit span length, while my ¼ Tae+Tg+Tc (positive nose-up) denote the combined aerodynamic
and related induced twist moments about the reference axis. The two tracers dg and db take the values 1 or 0,
when the gust or blast effects are included or discarded respectively. In the present numerical simulations,
when dg ¼ 1, db ¼ 0, and vice-versa.

As it was already stated, we consider that the aircraft wing features a bi-convex cross-section experiencing
the bending–twist coupling. The equations of motion pertinent to this case are as follows:

dw0 : Q0z þ Lae þ Lg þ Lc � b1 €w0 ¼ 0,

df : M 0
y � B00w þ Tae þ Tg þ Tc � ðb4 þ b5Þf

00
þ ðb10 þ b18Þ

€f
00
¼ 0,

dyx : M 0
x �Qz � ðb4 þ b14Þ

€yx ¼ 0, (13a 2 c)

with the boundary conditions for the case of the wing clamped at y ¼ 0

w0 ¼ 0; f ¼ 0; f0 ¼ 0; yx ¼ 0

and free at y ¼ L

Qz ¼ 0; �B0w þMy þ ðb10 þ b18Þ
€f
0
¼ 0; Bw ¼ 0; Mx ¼ 0. (14)

In the above equations, Mx, Qz, Bw, My are the 1-D stress resultant and stress couple measures that are
defined as

Mxðy; tÞ ¼

I
C

zNyy þ Lyy

dx

ds

� �
ds
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Qzðy; tÞ ¼

I
C

Nsy

dz

ds
þNny

dx

ds

� �
ds

Bwðy; tÞ ¼ �

I
C

F wðsÞNyy þ rtðsÞLyy

� �
ds

Myðy; tÞ ¼

I
C

NsycðsÞds: (15)

In addition, b1, b4, b5, b10, b14, b15, b18 are the inertia coefficients, while Nyy, Nsy, Nny, Lyy are the 2-D stress
resultant/couple measures.

In the previous equations, for the CAS lay-up configuration, the 1-D force–displacement relations are:

Mx

Qz

Bw

My

8>>>><
>>>>:

9>>>>=
>>>>;
¼

a33 0 0 a37

0 a55 a56 0

0 a56 a66 0

a37 0 0 a77

2
6664

3
7775

y0x
ðw00 þ yxÞ

f00

f0

8>>>><
>>>>:

9>>>>=
>>>>;
. (16)

While for the free warping wing model (see Refs. [9,12]), the force–displacement relations are:

Mx

Qx

Bw

My

8>>>><
>>>>:

9>>>>=
>>>>;
¼

a33 0 a37

0 a55 0

0 a56 0

a37 0 a77

2
666664

3
777775

y0x
ðw00 þ yxÞ

f0

8><
>:

9>=
>;, (17)

for the unshearable structural model, the counterpart of Eq. (16) is

Mx

Qz

Bw

My

8>>>><
>>>>:

9>>>>=
>>>>;
¼

a33 0 a37

0 a56 0

0 a66 0

a37 0 a77

2
666664

3
777775
�w000

f00

f0

8><
>:

9>=
>;. (18)

Having in view that the assumption of the spanwise cross-section non-uniformity was adopted, the stiffness
and inertia quantities, aij and bij are functions of spanwise coordinate. Their expression can be found in
Refs. [9,12,17].

In terms of the basic unknowns, the governing equations that include spanwise non-uniformity, transverse
shear, warping inhibition and rotatory inertias are:

dw0 : a55ðw
0
0 þ yxÞ

� �0
þ a56f

00
� �0

þ Lae þ Lg þ Lb þ Lc � b1 €w0 ¼ 0,

df : a37y
0
x

� �0
þ a77f

0
� �0

� a56ðw
0
0 þ yxÞ

� �00
� a66f

00
� �00

þ Tae þ Tg þ Tc � ðb4 þ b5Þ
€fþ ðb10 þ b18Þ

€f
0

h i0
¼ 0,

dyx : a33y
0
x

� �0
þ a37f

0
� �0

� a55ðw
0
0 þ yxÞ

� a56f
00
� ðb4 þ b14Þ

€yx
��������������

¼ 0, (19a 2 c)

to which we associate the boundary conditions:
At y ¼ 0

w0 ¼ 0; f ¼ 0; f0 ¼ 0; yx ¼ 0. (20a)
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At y ¼ L,

dw0 : a55ðw
0
0 þ yxÞ þ a56f

00
¼ 0,

df : � ½a56ðw
0
0 þ yxÞ�

0 � ½a66f
00
�0 þ a37y

0
x þ a77f

0

¼ �ðb10 þ b18Þ
€f
0
,

df0 : � a56ðw
0
0 þ yxÞ � a66f

00
¼ 0,

dyx : a33y
0
x þ a37f

0
¼ 0, (20b)

where L denotes the semi-wing span.
In the above equations, the term underscored by a dashed and double underscored solid lines identify those

related to the rotatory inertia and with the warping inhibition effect.
3. Unsteady aerodynamic loads for arbitrary small motion in incompressible flow

Based on the 2-D incompressible unsteady strip theory aerodynamics, the aerodynamic lift and twist
moment about the reference axis (selected to coincide with the mid-chord line), can be expressed in the time
domain as the superposition of three parts (see Ref. [18]):

Laeðy; tÞ ¼ � r1
d

dt

Z b

�b

g0ðx; y; tÞxdxþ r1UnG0ðy; tÞ

þ r1Un

Z 1
�b

gwðx; y; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2

p dx;

Taeðy; tÞ ¼ þ
1

2
r1

d

dt

Z b

�b

g0ðx; y; tÞðx
2 �

1

2
b2
Þdx

� r1Un

Z b

�b

g0ðx; y; tÞxdxþ
1

2
r1Unb2

Z 1
�b

gwðx; y; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2

p dx, (21a,b)

where Un is the free stream speed normal to the leading edge, g0(x,y,t) is the quasi-steady distributed bound
vortex intensity (on the wing), gw(x,y,t) is the vortex intensity in the wake, and G0(y,t) is the quasi-steady
circulation. From the aerodynamic potential theory, g0(x,y,t), gw(x,y,t) can be uniquely determined by the
boundary (no-penetration) condition and the Kutta condition, as illustrated in the following.

Expressed in the body-fixed frame as represented in Fig. 1, (see Refs. [19,20] and also Refs. [9,17]) the
vertical position of the wing cross-section can be expressed as

zaðx; y; tÞ ¼ w0ðy; tÞ � fðy; tÞx, (22)

where w0(y,t) and f(y,t) denote the plunging displacement of the points associated with the reference axis, and
the twist about this axis, respectively.

Following the developments in Ref. [18] considered in conjunction with those in Ref. [19], the aerodynamic
loads can be separated into two parts: the quasi-steady part and the part taking into account the influence of
the wake. As a result, we get

G0ðy; tÞ ¼ �2b

Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffi
1þ x̂

1� x̂

s
_w0 �Unf� bx̂ _f
h i

dx̂

¼ �2p _w0 �Unf�
1

2
b _f

� �
D�2pbw0:75cðy; tÞ,
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Laeðy; tÞ ¼ � pr1b2
½ _w0:5cðy; tÞ�

� 2pr1Unb w0:75cðy; 0Þfw

Unt

b

� �
þ

Z t

0

dw0:75cðt0Þ

dt0
fw

Un

b
ðt� t0Þ

� �
dt0

	 

,

Taeðy; tÞ ¼ � pr1b3 1

2
Un

_fþ
1

8
b €f

� �

� pr1Unb2 w0:75cðy; 0Þfw

Unt

b

� �
þ

Z t

0

dw0:75cðt0Þ

dt0
fw

Un

b
ðt� t0Þ

� �
dt0

	 

; (23a 2 c)

where the underscored terms are associated with the circulatory part of aerodynamic loads; fw is Wagner’s
function in the time domain that is the counterpart of Theodorsen’s function in the frequency domain, (related
to the latter one through an inverse Laplace transform), while w0.75 and w0.5 denote the downwash at the 3

4 and
1
2
chord points measured from the leading edge of the airfoil.
The above results are for 2-D cross-section wings. For a finite-span wing, the modified strip theory is used to

extend the 2-D aerodynamics to the 3-D one [21,22]. To this end, in order to be able to capture also the case of
swept aircraft wings, the reference coordinate system is being rotated with the wing by the sweep angle L (see
e.g. Ref. [23]). In addition, the lift curve slope 2p and the downwash boundary condition for the 2-D
aerodynamics model are modified to account for the finite-span effects [19,21,22]:

2p! CLf �
dCL

df
¼

AR

ARþ 2 cos L
2p;

1

2
b! b

CLf

2p
�

1

2

� �
. (24)

Related to Eqs. (23b,c), only the circulatory terms should be modified, and in connection with the geometric
transformations, these are carried out in the rotated chordwise coordinate system (see Fig. 1).

As to the frame transformation, the procedure in Refs. [19,23] is followed here. After collecting
the coefficients related to the chordwise coordinate x, the downwash in the rotated coordinate system is
expressed as

waðx; y; tÞ ffi
qza

qt
þ

qza

qx̄
¼

qza

qt
þU1

qza

qx
þ

qza

qy
sin L

� �

¼ _w0 �U1f cos LþU1 sin L
qw0

qy

� �
� x _fþU1

qf
qy

sin L
� �

. (25)

Replacing in the previous equation _w0 �Unf by _w0 �U1f cos LþU1 sin Lðqw0=qyÞ; _fþ
U1ðqf=qyÞ sin L, and denoting Un � U1 cos L, we get the downwash velocities at 3

4
and 1

2
chord points

of the profile as

w0:75cðy; tÞ ¼ _w0 �UnfþUn tan L
qw0

qy

�
b

2
_fþUn

qf
qy

tan L
� �

CLf

p
� 1

� �
,

w0:5cðy; tÞ ¼ _w0 �UnfþUn tan L
qw0

qy
. (26)

4. Blast loads

The structure of combat aircraft or of space vehicles can be exposed during their operational life to blast
pulses generated by an explosion, or by shock-wave disturbances produced by an aircraft flying at supersonic
speeds, or by any supersonic projectile, rocket or missile operating in its vicinity.

In the latter case, the blast pulse is referred to as sonic-boom. Its time-history is described as an N-shape
pulse, featuring both a positive and a negative phase. Having in view the large blast front generated by the
explosion as compared to the dimensions of the wing, one assumes with sufficient accuracy that the pressure is
uniform over the entire wing span and chord, and the impact is at normal incidence.
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The sonic-boom overpressure can be expressed as follows (see e.g. (28)):

LbðtÞ ¼
P0ð1� t=tpÞ for 0otortp

0 for to0 and t4rtp

(
(27)

where P0 denotes the peak reflected pressure in excess to the ambient one, tp denotes the positive phase
duration of the pulse measured from the time of impact of the structure, and r denotes the shock pulse length
factor.

For r ¼ 1, the sonic-boom degenerates into a triangular explosive pulse, for r ¼ 2, a symmetric sonic-boom
pulse is obtained, while r6¼2 corresponds to a non-symmetric N-pulse. When r ¼ 1 and tp-N, in Eq. (27) the
N-pulse degenerates in a step pulse.

For the blast pulse generated in an explosion, the overpressure is expressed in terms of Friedländer’s
exponential decay equation as [24,25]

LbðtÞ ¼ P0 1�
t

tp

� �
expð�a0t=tpÞ (28)

where the negative phase of the blast is included. In Eq. (28), a0 denotes a decay parameter that has to be
adjusted as to approximate the pressure curve from the blast test. As it could be inferred, the triangular
explosive blast pulse may be viewed as a limiting case of Eq. (28), for a0=tp ! 0: As it can be realized (see also
Ref. [25]), the latter case provides the most severe explosive blast load scenario.

The aeroelastic response to gusts will be also addressed here, and related with it, the concept of Küssner’s
function associated wit the gust penetration effects will be used. Such effects are initiated by the changes in the
effective angle-of-attack due to the change in the flow direction. If we consider wG(t) as a gust variable
velocity, then, the lift due to the penetration into a gust is given by

LgðtÞ ¼ CLfbrU1 wGð0ÞcðtÞ þ
Z T

0

qwGðt0Þ=qt0cðt� t0Þdt0

	 

, (29)

where c (t) is Küssner’s function. Its approximate expression, derived by von-Kármán and Sears and reported
in Ref. [19] for elliptic wings in an incompressible flow is CðtÞ ¼ 1� 0:500�0130t � 0:500�t; ðt40Þ.

In the following developments, Küssner’s function derived for sharp-edge gusts will be used to determine
the aeroelastic response to gusts of different shapes. This will be carried out via the use of Duhamel’s integral
concept. Herein, the gust velocity distribution corresponding to a sharp-edge gust will be used. In this case

wGðtÞ ¼ HðtÞV G, (30)

where VG is peak gust velocity, while H( ) is Heaviside’s function. As concerns the twist moment about the
reference axis induced by the gust, its expression is

TgðtÞ ¼
1

2
bLgðtÞ ¼

1

2
CLfb2Un

wGð0ÞcK ðtÞ þ
Z t

0

qwGðt0Þ
qt0

cK ðt� t0Þdt0

� �
. (31)
5. State-space representation of the governing system

Due to the non-conservative nature of the boundary value/eigenvalue problems and the high complexity
arising from the structural model that incorporates non-classical features, it is appropriate to apply the spatial
discretization and then cast the governing equations in state-space form. The spatial discretization is carried
out via the use of the extended Galerkin’s method (EGM) (see Refs. [12,26]). In addition, for the purpose of
treating blast/gust type loads and control forces in a unified way, the temporal discretization is implemented.
Details of this can be found in Refs. [9,17,27].
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Next, we define the following basic dimensionless parameters:

Z � y=L; t � Unt=b; AR � L=b; ŵ0ðZ; tÞ � w0=2b;

f̂ðZ; tÞ � fðZ; tÞ; ŷxðZ; tÞ � yxðZ; tÞ; dð:Þ=dt ¼ ðb=UnÞdð:Þ=dt
(32)

while for the spatial discretization one uses the representation

ŵ0ðZ; tÞ ¼ Ŵ
T

wðZÞq̂wðtÞ f̂ðZ; tÞ ¼ Ŵ
T

fðZÞq̂fðtÞ,

ŷxðZ; tÞ ¼ Ŵ
T

x ðZÞq̂xðtÞ, (33)

where the shape functions ĈwðZÞ; ĈfðZÞ; and ĈxðZÞ are only required to fulfill the geometric boundary
conditions, while q̂wðZÞ; q̂fðZÞ; and q̂xðZÞ are the N� 1 generalized coordinates. Following the steps carried out
in Refs. [9,17], the state-space form of the aeroelastic governing system results as

_̂xs

_̂xa

( )
¼

As Bs

BaAs Aa þ BaBs

" #
x̂s

x̂a

( )
þ

0m�1

M
�1

n

D2M
�1

n

..

.

D2M
�1

n

2
666666664

3
777777775
fQg þQbg, (34)

or in a more compact form, see Refs. [9,17] as

f
_̂
Xg ¼ ½A�fX̂g þ ½Be�fQg þQbg. (35)

In Eq. (34), m is the number of the structural mode actually used in the calculation, while n is the number of
aerodynamic lag terms used in the approximation of Wagner function. In addition, xs and xa are 2m� 1,
nm� 1 vectors that describe the motion of the wing and unsteady aerodynamic loads on the wing, respectively,
while Qg and Qb are the generalized gust and blast loads and the generalized control forces, respectively. The
explicit expression of the involved matrices and vectors are supplied in the Appendix of Ref. [17].

6. Design of the LQG controller and sliding mode observer

Active vibration control of aircraft structures, in general, and that of aeroelastic phenomena featured by
aeronautical flight vehicles, in particular, constitutes a topic playing an exceptional importance toward the
avoidance of large oscillations in the subcritical flight speed range and the expansion of the flight envelope,
achieved through the increase of the flutter speed.

Moreover, the advanced military aircraft is likely to operate in severe environmental conditions consisting
of blast/explosive pressure pulses and shocks inducing large oscillations in the pre-flutter speed range that can
jeopardize the precision of the aircraft mission and its life span. These facts fully underline the necessity of the
implementation of an active control capability enabling one to suppress the oscillations in the shortest possible
time and expand the flight envelope without weight penalties.

To control vibration of such structures, a controller with finite order was commonly used. A finite-
dimensional control may be designed from a reduced-order model (ROM) of the continuous structure
counterpart.

When a ROM based finite-dimensional controller is applied to a real structure, it stabilizes just a few modes
among the infinite number of modes of the system. Stability of the residual modes is not guaranteed. The
interaction between the residual modes and the controller may deteriorate the performance of the control
system, and even cause instability. Due to its detrimental effects on performance of the closed-loop system,
this phenomenon studied first by Balas [28] and known as spillover, was further investigated, and various
approaches enabling one to suppress it have been proposed. In the context of the aeroelasticity of a supersonic
airfoil, in Refs. [7,8] the feedback controls circumventing the problem of the spillover have been presented,
while a number of comprehensive survey papers on this matter have been provided in Refs. [1,2].
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Within this paper, an aeroelastic control approach of 3-D aircraft wings exposed to time-dependent external
blasts and operating in an incompressible subcritical flow field will be investigated. Within this approach, the
control is aimed at improving robustness to modeling uncertainties and external disturbances.

6.1. LQG controller

While the Linear Quadratic Regulator (LQR) design provides an optimal controller, this control
methodology is not reliable because it uses the full state vector X. Furthermore, due to the unavailable lag
states or of unpredictable situations emerging, for example, as a result of the failure of sensors, an observer
should be designed as to estimate the unavailable states. As a result, the feedback control scheme should be
implemented via the estimated states.

In order to approach this problem, it is convenient to split the governing state-space system in controlled
and uncontrolled parts as

_XC ¼ ACXC þ BCu,

_XR ¼ ARXR þ BRu,

y ¼ CCXC þ CRXR, (36a 2 c)

where XC are the controlled mode states and XR are the residual modes states, where the block matrices AC,
BC. CC and CR are of appropriate dimensions to XC and XR. Usually, a controller and an observer are
designed based on the controlled mode system, Eq. (36a), ignoring the residual mode subsystem, Eq. (36b). In
this sense, the LQG is designed as follows:

_~XCðtÞ ¼ AC
~XC þ BCuðtÞ þ L yðtÞ � CC

~XðtÞ
� �

,

uðtÞ ¼ K ~XCðtÞ,

~yðtÞ ¼ CC
~XC , (37a 2 c)

where ~XC denotes the estimated state based on input and output measurements, while K and L are the control
gain matrix and the Kalman filter gain matrix, respectively. It clearly appears that the LQG method couples
the Kalman filter with the LQR.

From Eqs. (36c) and (37c) it can be seen that the difference between the actual measurements y and the
estimated ones ~y, referred to as the residual, is proportional to the error dynamics eðtÞ ¼ XðtÞ � ~XðtÞ. This
implies that if the error would tend to zero, also the residuals will experience a similar trend.

Furthermore, one needs to consider the effects of process disturbances and of measurement noise. To
address these issues, an LQG design, which uses noise-corrupted outputs for feedback is used as a controller.
Using LQG method with plant disturbance and sensor noise, the associated equations representing the
counterpart of Eqs. (36) are represented in state-space form as

_XðtÞ ¼ AXðtÞ þ BuðtÞ þ FwðtÞ,

yðtÞ ¼ CXðtÞ þ vðtÞ. (38a,b)

The plant disturbance w(t) and sensor noise v(t) are both assumed to be stationary, zero mean, Gaussian
with joint correlation function

E
wðtÞ

vðtÞ

" #
uðtÞvðtÞ½ �

( )
¼

X 0

0 Y

� �
dðt� tÞ, (39)

where E½:� denotes the expected value, d denotes Dirac delta, and X and Y represent the intensities of the plant
disturbance and the sensor noise. For the present case, X and Y are both defined to be positive definite.

The associated control input is obtained such that the system is stabilized and the control minimizes the cost
function

JLQG ¼ E

Z 1
0

xTuT
� � Z 0

0 R

� �
x

u

� �
dt

	 

. (40)
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The optimal feedback gain matrix K and the Kalman filter gain matrix L are obtained from

K ¼ �R�1BTP; L ¼ �PCTH�1, (41a,b)

where P and P are the positive definite solutions of the following Riccati equations:

ATP� PBR�1BTPþ Z ¼ 0

APþPCTH�1CPþ FNF�1 ¼ 0:
(42a,b)

Eq. (42b) reflects the fact that the design of Kalman filter is the dual problem to that of the full state
feedback controller. It also results that the filter gain is determined based on statistical knowledge of the plant
disturbance and noise measurements.
6.2. Sliding mode observer

The controller and the observer are designed based on the mathematical model that considers controlled
modes only, whereas the output is formed from both controlled and residual (uncontrolled) modes. Since
residual modes are not considered in the controller and observer design, their neglect may cause both control
spillover and observation spillover. For evident reasons, it is desired to reduce the observation spillover as to
remove the potential of generating any instability. To this end, we introduce a sliding mode observer which is
known to have the robustness and the disturbance decoupling properties, this yielding a reduction of the effect
of observation spillover from the residual modes, see Refs. [29,30], and also Ref. [31] where, in the latter paper
the control methodology was applied to the case of a reusable space vehicle.

Considering the controlled mode system, Eq. (36a), the sliding mode observer has the form

_~X CðtÞ ¼ AC
~XC þ BCuðtÞ þ L yðtÞ � CC

~XCðtÞ
� �

þ Yu (43)

where u represents a discontinuous switching component defined as

u ¼
�r

Pe

jjPejj
; ea0;

0; e ¼ 0:

8<
: (44)

The matrix P is a positive definite symmetric matrix that satisfies

PA0 þ AT
0P ¼ �Q, (45)

where A0 ¼ AC ¼ LCC; Q is a positive definite design matrix while r is a positive scalar function playing the
role of a design parameter, and e(t) is the estimated error.
Table 1

Material properties and geometric specification of a wing with CAS lay-up and biconvex cross-section

EL 206.8� 109N/m2

EL ¼ ET0 5.17� 109N/m2

GTT0 3.10� 109N/m2

GLT ¼ GLT0 2.55� 109N/m2

mLT ¼ mLT0 ¼ mTT0 0.25

r 1.528� 103 kg/m3

Length (L) 6.058m

Width (2b) 0.757m

Depth (2d) 0.100m

Aspect ratio 16

Wall thickness 0.003m

Number of layers 6

Layer thickness 0.0005m

Sweep angle (L) 0
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Fig. 2. Dynamic aeroelastic response of a wing (y ¼ �751) subject to a sharp edged gust near the onset of flutter with parameters

(UN ¼ 138, 139, 140m/s): (a) plunging response (b) pitching response.

Table 2

Eigenvalues of the system matrix A near the onset of flutter (y ¼ �751)

UN ¼ 138m/s (subcritical response) UN ¼ 138m/s (supercritical response)

�0.031571.739j �0.031571.726j

�0.034070.910j �0.03470.903j

�0.038570.560j �0.03970.555j

�0.0036270.275j 0.0001570.273j

�0.10170.249j �0.10570.249j

�0.29170.00635j �0.29170.00646j

�0.30070.000506j �0.30070.000513j

�0.045770.000386j �0.045770.000392j

�0.0455 �0.0455

�0.0475 �0.0475

�0.0505 �0.505

�0.215 �0.214

L. Librescu et al. / Journal of Sound and Vibration 318 (2008) 74–9286
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The objective is to induce a sliding motion in the error space

s0 ¼ e 2 Rn : CCe ¼ 0f g, (46)

that produces an estimate ~X C of X C , such that the error eðtÞ ! 0 as t!1, despite the presence of the
uncertainties in modeling and plant disturbances. Considering that the output is composed of both the
controlled modes and the residual modes, y ¼ CCX C þ CRX R, the dynamics of the estimated error becomes

_e ¼ _XC �
_~XC ¼ A0eðtÞ þ Yuþ LCRXR. (47)

Note that the residual modes appear as a disturbance in the error dynamics. With the given form of
additional discontinuous input, the sliding mode observer can estimate the states of the system as decoupling
the effect of residual modes. For the stability of observation error dynamics including residual modes, using
the Lyapunov stability theory (see e.g., Refs. [32]), it can be shown that the error dynamics is asymptotically
stable.
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Fig. 3. Performance of state estimation using (b) sliding mode observer as compared to that based solely on (a) Kalman filter

(UN ¼ 138m/s).
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7. Results and discussion

Unless otherwise stated, the geometrical and material characteristics of the wing that are used in the
numerical simulations are supplied in Table 1. Note that in the actual simulations, the first five structural
modes and two aerodynamic lag terms are used.

Wagner’s function is approximated by Jones’ quasi-polynomial formulas, and in the numerical simulations,
all the response quantities, that is the dimensionless plunging, twist and transverse rotations are measured at
the beam tip. In addition, unless otherwise specified, in the numerical simulations, the case of an unswept
wing, L ¼ 0 and the ply-angle y ¼ �751, have been considered, where, (see Fig. 1), ply-angle y is considered
positive when measured from the positive circumferential coordinate s to the fiber direction, toward the
positive span y-axis.

For this aeroelastic model, the flutter speed was obtained via the solution of both the complex eigenvalue
problem and from the subcritical aeroelastic response analysis, and the related results are supplied in Table 2
and Fig. 2, respectively.

In Fig. 2, the open-loop dimensionless plunging, transverse shear and pitching time-histories for the
aeroelastic system operating in three different flight speeds (UN ¼ 138, 139 and 140m/s), and exposed to a
sharp edged gust characterized by VG ¼ 15m/s are presented. With the increase of the flight speed, an increase
of the aeroelastic response amplitude is experienced. These results are simulated based on zero initial
conditions.

Fig. 3 shows that for the case of the only first mode measurement available as a sensor output, the sliding
mode observer finally produces stable pitching deflection estimates based on the measurement of first mode
only and, consequently makes the system stable at the subcritical flight speed UN ¼ 138m/s.

Fig. 4 represents the uncontrolled and controlled aeroelastic response of the wing tip under a sharp edged
gust near the onset of flutter (UN ¼ 138, 140m/s).

The results reveal the great efficiency of the adopted control methodology. Moreover, the results in Fig. 3
reveal that the SMO estimated predictions converge toward the real ones much faster than those based on
Kalman Filter.

Fig. 5 displays the uncontrolled/controlled dimensionless aeroelastic response of a wing (y ¼ �751)
subjected to an explosive blast near the onset of flutter (UN ¼ 138, 140m/s) based on first mode measurement
only. The results reveal the excellent performance of the feedback control based on SMO.

The counterpart of Fig. 5 for the case of the system exposed to a symmetric sonic-boom (r ¼ 2), is depicted
in Fig. 6, and similar conclusions to those emerging from Fig. 5 can be reached. Herein, it is assumed that only
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Fig. 4. Uncontrolled and controlled pitching aeroelastic response of a wing (y ¼ �751) subjected to a sharp-edged gust near the onset of

flutter (UN ¼ 138m/s).
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(UN ¼ 140m/s, P̂m ¼ 1, t ¼ 200): (a) plunging response and (b) pitching response.
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the first mode measurement is available. In addition to the high efficiency of the control, the results reveal that
the closed-loop oscillation maximum response amplitude occurs in the free motion regime, that is for t4400,
when the explosive pulse has left the wing.

In Fig. 7, for a swept wing in a gas flow at a speed close to the flutter speed and subjected to a
sharp-edge gust, it is shown that the positive wing swept angle can exert a beneficial influence
on the aeroelastic response. In contrast to this, trend, for negative sweep angles, larger plunging
amplitudes occur. In spite of this, the oscillations are much milder in the latter case than in the
former one.

Finally, Fig. 8 shows the open-loop plunging time-history for the wing tip exposed to a sharp edged gust, for
three selected ply-angles, when the flight speed is close to the flutter speed.

The results reveal that although for y ¼ 451 the oscillation amplitude is larger than for y ¼ 601 and
751, in the former case the oscillations are completely damped in a short time, much shorter than for
the other two ply-angles. These results reveal the efficiency of the aeroelastic tailoring toward the aeroelastic
response.
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8. Conclusions

In this paper, a comprehensive aeroelastic model of anisotropic composite aircraft wings in the form of a
thin/thick-walled beam considered in conjunction with a robust control methodology that yields an
improvement of robustness to modeling uncertainties, external disturbances, and restricted sensor
measurements was presented. The high efficiency of the implemented LQG control strategy using a sliding
mode observer toward reducing the oscillation amplitudes generated by the impact of a blast pulse or by a
gust, in the subcritical flight speed range, of expanding the flight envelope without weight penalties, and
preventing the occurrence of the flutter instability penalties was demonstrated.

Although the developed structural model is proper to a high-aspect ratio wing, due to the incorporation of
the warping inhibition, it can be applied to moderate to small aspect ratio wings, as well. For some results
regarding the implications of the warping inhibition on static/dynamic response of cantilevered beams, the
reader is referred to Ref. [33]. It should also be mentioned here that the preliminary results obtained by
these authors reveal that this control methodology can be of great efficiency also in the compressible flight
speed regime.
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